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In this paper, we consider a transient inverse heat conduction problem (IHCP) defined on an irregular
three-dimensional (3D) domain in pool boiling experiments. Heat input to a circular copper heater of
35 mm diameter and 7 mm thickness is provided by a resistance heating foil pressed to the bottom of
the heater. The heat flux at the inaccessible boiling side is estimated from a number of temperature read-
ings in the heater volume. These temperatures are measured by some high-resolution microthermocou-
ples, which are mounted 3.6 lm below the surface in the test heater. The IHCP is formulated as a
mathematical optimization problem and solved by the conjugate gradient (CG) method. The arising par-
tial differential equations (PDEs) are solved using the software package DROPS. A simulation case study is
used to validate the performance of the solution approach. Finally, we apply the solution approach to the
IHCP in pool boiling experiments. The procedure enables the reconstruction of local instantaneous heat
flux distribution on the heater surface at different locations along the boiling curve.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Boiling heat transfer is hard to model and to predict due to its
complex nature [1,2]. During the past decades, many investigations
of boiling phenomena have been conducted on the equipment or
the macroscale, the meso- and microscopic as well as the molecu-
lar scale. The dynamic behavior of a rising bubble plume is a typical
phenomenon observed on the macroscale of the heat transfer
equipment, e.g. in a boiling vessel. It has been studied extensively
both theoretically and experimentally [3–5]. Dhir and Liaw [6]
have developed a unifying framework for nucleate and transition
boiling on base of a macroscopic geometry model of ‘‘vapor stems”.
Their model assumes that all heat conduced into the liquid adja-
cent to the surface is used for evaporation at the interface of the
vapor stems. On the mesoscale, single bubbles growing on a heated
plate or emerging out of the closed film in film boiling have been
studied in detail, e.g. [7–9]. On the microscale, the microlayer the-
ory proposed by Stephan and Hammer [10] predicts that most of
the heat during boiling is transferred in the micro-region of the
three-phase contact line by evaporation. Predicted peak heat fluxes
in the microlayer are much larger ð�102Þ than the macroscopic
heat fluxes captured by the boiling curve. However, none of the
ll rights reserved.
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mentioned approaches have been fully validated yet because of
lacking experimental and theoretical evidence. Existing design
methods are mostly based on correlations which are valid only
for one of the boiling regimes, i.e. nucleate boiling, critical heat
flux, transition and film boiling. Boiling heat flux has been consid-
ered to be correlated with many different parameters, e.g. super-
heat, nucleation site density or bubble diameter in the nucleate
boiling and average vapor fraction or vapor velocity in transition
boiling [11]. It is unclear yet which parameters dominate the boil-
ing heat transfer. A reliable prediction of boiling heat fluxes on a
theoretical basis as a function of superheat and other relevant
parameters are still not available, especially for higher heat fluxes.

An adequate understanding of the various physical effects can
only be obtained if high resolution measurement techniques are em-
ployed [12]. One particular technique constitutes of microthermo-
couples with the tips very near (3.6 lm) to the surface in a test
heater. The temperature readings in the heater volume provide indi-
rect information on the surface temperature, the surface heat flux
distribution as well as the wetting characteristics on the surface.
This kind of experimental approach has been taken in recent years
at TU Berlin [12]. Fig. 1 depicts the experimental setup of the test
heater with the thermocouple array in the center. The test heater
is made from high purity copper and is 7 mm thick. It is cylindrical
(diameter 35 mm, 5 mm high) in the top part and quadratic in the
bottom part with 38 mm times 38 mm and 2 mm thick with the
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Nomenclature

Direct problems
X 3D domain ½m3�
CH heated boundary of X ½m2�
CR remaining boundary of X ½m2�
n outer normal on oX [–]
H0 initial temperature [K]
qh input heat flux on CH ½W=m2�
tf ; t0 final and backwards times [s]
a thermal diffusivity ½m2=s�
l adjoint problem solution [–]
oX the boundary of X ½m2�
CB boiling boundary of X ½m2�
CM measurement plane inside X ½m2�
H; T; Td temperature distribution in X [K]
Hm; Tm temperature measurement [K]
qb unknown heat flux on CB ½W=m2�
k thermal conductivity [W/m K]
S sensitivity problem solution [–]

Optimization
J (continuous) objective functional [–]
Pn descent direction (nth iteration) [–]

ln search step length (nth iteration) [–]
rJ gradient of the objective functional [–]
cn conjugate coefficient (nth iteration) [–]
q̂b

n estimated heat flux (nth iteration) ½W=m2�

Simulation case study
qex

b simulated exact heat flux ½W=m2�
b spatially varying term of qex

b [–]
J# (discrete) objective functional [–]
s time step size [s]
x measurement error [–]
niter number of optimization iterations [–]
a temporally varying term of qex

b [–]
Hex

m generated measurement data [K]
k � k# solution norm [–]
� threshold parameter [–]
r standard deviation [–]

Y. Heng et al. / International Journal of Heat and Mass Transfer 51 (2008) 5072–5087 5073
edges cut off. The heater surface CB is horizontally positioned. Heat
flux input qh is provided by a resistance heating foil, which is pressed
on the bottom of the heater. For electrical insulation, a 0.25 mm
thick sheet of aluminium nitride is located between foil and heater.

In this work, the estimation of the local heat flux qb on the boil-
ing surface CB from the temperature readings Hm in the heater vol-
ume is considered. It belongs to the class of inverse heat
conduction problems (IHCPs) [14,15], which are ill-posed in the
sense of Hadamard [16]. Hadamard gave the definitions of ‘‘well-
posed problems” and ‘‘ill-posed problems” in the early 20th cen-
tury. Today, a large number of studies related to IHCPs have al-
ready been published. The presented solution methods are
mostly based on so-called regularization strategies, e.g. Tikhonov
regularization [17], space marching [18], function specification
[14] and iterative methods [19]. However, most of them are re-
stricted to one or two space dimensions. Only a few publications
are available for IHCPs in three dimensions [20–24]. In [20], an in-
verse method based on the symbolic approach was proposed to
determine the boundary condition in three-dimensional (3D) in-
verse heat conduction problems. The authors in [22] solved the in-
verse problem using the sequential function specification method
with the assumption that future-boundary heat flux varies linearly
with time. A filter-based inversion solution method for multi-
dimensional IHCPs, which extends the work [25], was presented
in [24]. The solution method is based on the interpretation of IHCP
in the frequency domain. The authors of [21,23] propose an itera-
tive regularization strategy based on conjugate gradient (CG)
method for the solution of 3D IHCPs, which has been applied to
the solution of an IHCP in a falling film experiment and obtained
good estimation results. In this work, we present a systematic ap-
proach that infers the unmeasurable local boiling heat fluxes from
point-wise high resolution transient temperature measurements
using a mathematical model. We formulate our estimation prob-
lems arising from pool boiling experiments for different boiling re-
gimes as 3D IHCPs and solve them by applying a CG-based solution
approach. The reconstructed local boiling heat fluxes give a unify-
ing description of the entire boiling curve.

In our previous work, we solved a similar IHCP to estimate the
surface heat flux and the surface temperature fields from temper-
ature readings [13,26]. In contrast to this work, only a two-dimen-
sional (2D) heat conduction model with unknown boundary
conditions at the heater surface has been set up before. The center
part of the heater with the microthermocouple array has been par-
tially discretized by means of finite-elements to result in a large
system of ordinary differential equations (ODEs). Then linear mod-
el reduction techniques [27] were employed to reduce the order of
the obtained ODE system. Filter-based inversion algorithms [24]
have been constructed and applied to this model. Spatial discreti-
zation of the heat conductor in three dimensions results in a much
larger system of ODEs, such that the model reduction step becomes
computationally intractable.

To overcome the computational difficulties in our filter-based
method, we consider in this paper an alternative approach based
on the methodology used in [23], where the spatial domain is mod-
elled in 3D. For our problem, an unstructured finite element dis-
cretization is applied to the 3D geometry, since the measurement
positions are non-uniformly distributed. The boundary conditions
are well-defined at those boundaries where no boiling is occurring.
This model forms the core of a generalized least-squares problem
to minimize an error norm between model predictions and the ac-
tual temperature measurements at the thermocouple tips. The in-
verse problem is solved by an adaptive method involving the CG
method for optimization and a multilevel finite-element method
for the solution of the arising partial differential equations (PDEs).

The paper is organized as follows. In Section 2, the mathemati-
cal formulation of the inverse problem is given. We present a CG-
based solution approach in Section 3. In Section 4, we first validate
the performance of this solution approach by a simulation case
study and then apply it to the real measurement data from the pool
boiling experiments. Finally, we give some conclusions about the
estimation results and remarks concerning future work.
2. Mathematical formulation of the inverse problem

We consider the general 3D domain X shown in Fig. 2, with
boundary oX ¼ CH [ CB [ CR, where CH;CB and CR denote the
heated boundary, the boiling boundary and the adiabatic bound-



Fig. 1. The test heater and thermocouple tips. (adopted from [13]).

Fig. 2. The general 3D geometry and coordinates.
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aries of X, respectively. The linear heat conduction problem for the
temperature Hðx; tÞ is given by

oHðx; tÞ
ot

¼ r � ðaðxÞrHðx; tÞÞ; ðx; tÞ 2 X� ½0; tf �; ð1Þ

Hðx;0Þ ¼ H0ðxÞ; x 2 X; ð2Þ

� kðxÞ oHðx; tÞ
on

¼ qhðx; tÞ; ðx; tÞ 2 CH � ½0; tf �; ð3Þ

� kðxÞ oHðx; tÞ
on

¼ qbðx; tÞ; ðx; tÞ 2 CB � ½0; tf �; ð4Þ

� kðxÞ oHðx; tÞ
on

¼ 0; ðx; tÞ 2 CR � ½0; tf �; ð5Þ

where thermal conductivity k � kðxÞ and thermal diffusivity a � aðxÞ
are functions of the spatial coordinates x. The final time is denoted by
tf . The outer normal on the boundaries is denoted by n.

The inverse problem corresponds to the estimation of the un-
known heat flux qbðx; tÞ on CB using temperature measurements
Hmðx; tÞ on CM, which are obtained by interpolating the pointwise
temperature measurement Hmðxi; tÞ as shown in Fig. 1. In this
work, only a control volume which covers the 6� 6 microthermo-
couple (MTC) grid at the center of the heater is considered. Since
there are no experimental data for the initial temperature distri-
bution H0 available and the values of measured temperatures at
the first time instant are almost the same at the measurement
positions, their average value is employed as an estimate for
H0ðxÞ. Errors in this estimate will result in an unsatisfactory esti-
mation at the first several time instants, however an overall good
estimation quality throughout the whole time interval can be en-
sured. The heat flux input qh was measured in the experiments
and its values are almost stationary and uniformly distributed
in space, hence we use a constant approximation in space and
time for the computation. Zero heat flux is assumed at the
remaining lateral boundaries CR due to a lack of better
information.

Due to the linearity, the Eqs. (1)–(5) can be divided into a direct
problem:

oTdðx; tÞ
ot

¼ r � ðaðxÞrTdðx; tÞÞ; ðx; tÞ 2 X� ½0; tf �; ð6Þ

Tdðx;0Þ ¼ H0ðxÞ; x 2 X; ð7Þ

� kðxÞ oTdðx; tÞ
on

¼ qhðx; tÞ; ðx; tÞ 2 CH � ½0; tf �; ð8Þ

� kðxÞ oTdðx; tÞ
on

¼ 0; ðx; tÞ 2 CB � ½0; tf �; ð9Þ

� kðxÞ oTdðx; tÞ
on

¼ 0; ðx; tÞ 2 CR � ½0; tf �; ð10Þ

with known initial and boundary conditions and the remaining
problem

oTðx; tÞ
ot

¼ r � ðaðxÞrTðx; tÞÞ; ðx; tÞ 2 X� ½0; tf �; ð11Þ

Tðx;0Þ ¼ 0; x 2 X; ð12Þ

� kðxÞ oTðx; tÞ
on

¼ 0; ðx; tÞ 2 CH � ½0; tf �; ð13Þ
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� kðxÞ oTðx; tÞ
on

¼ qbðx; tÞ; ðx; tÞ 2 CB � ½0; tf �; ð14Þ

� kðxÞ oTðx; tÞ
on

¼ 0; ðx; tÞ 2 CR � ½0; tf �; ð15Þ

with the unknown boundary condition qbðx; tÞ and vanishing initial
condition.

The temperatures H; Td; T in the problems (1)–(15), respec-
tively, are related by

Hðx; tÞ ¼ Tdðx; tÞ þ Tðx; tÞ; ðx; tÞ 2 X� ½0; tf �:

With this decomposition, the inverse problem mentioned above is
equivalent to estimate qb in (11)–(15) using measurement data
Tm, which are obtained by subtracting the solution Tdðx; tÞ of the di-
rect problem (6)–(10) on CM from the original temperature mea-
surement Hmðx; tÞ, i.e.

Tmðx; tÞ ¼ Hmðx; tÞ � Tdðx; tÞ; ðx; tÞ 2 CM � ½0; tf �:
Fig. 3. Measured positions of 1 � 1 mm MTC array (adopted from [12]).
3. Optimization-based solution approach

The direct problem (6)–(10) is computed using the software
package DROPS [28]. The solution of the considered inverse prob-
lem for qb is obtained by minimizing the objective functional

JðqbÞ :¼
Z tf

0

Z
CM

½Tðx; t; qbÞ � Tmðx; tÞ�2dxdt; ð16Þ

where Tðx; t; qbÞ refers to the temperature field determined as the
solution of the problem (11)–(15) for a certain qb.

The optimization problem (16) is solved by applying a standard
iterative optimization algorithm presented in [21,23], where the
CG method [29,30] was used to estimate the unknown quantities
qb sequentially until a certain stopping condition is fulfilled.

3.1. The CG iteration

The CG iterative process to calculate an estimate q̂nþ1
b of qb is

q̂b
nþ1ðx; tÞ ¼ q̂b

nðx; tÞ � lnPnðx; tÞ; for n ¼ 0;1;2; . . . ð17Þ

We choose q̂b
0 ¼ 0; P0 ¼ rJ0 as initial guesses. ln is the search step

length in iteration n. The conjugate search direction Pnðx; tÞ is up-
dated by

Pnðx; tÞ ¼ rJnðx; tÞ þ cnPn�1ðx; tÞ: ð18Þ

The corresponding conjugate coefficient cn;n P 1; is determined
from

cn ¼
R tf

0

R
CB
½rJn�2dxdtR tf

0

R
CB
½rJn�1�2dxdt

; ð19Þ

and c0 ¼ 0.
At each iteration step, there are two quantities to be evaluated,

namely ln and the gradient rJn. Their determination requires to
solve the so-called sensitivity and adjoint problems [15]. The iter-
ative CG-process ends when a certain given stopping condition is
fulfilled.

3.2. The sensitivity problem

The sensitivity problem is derived by standard arguments. It is
assumed that a variation dqb of qb results in a perturbation dT of T.
In order to simplify notation, we denote dT by S in the following.
Replacing qb by qb þ dqb and T by T þ S in (11)–(15), then subtract-
ing the original direct problem, we obtain the sensitivity problem

oSðx; tÞ
ot

¼ r � ðaðxÞrSðx; tÞÞ; ðx; tÞ 2 X� ½0; tf �; ð20Þ

Sðx;0Þ ¼ 0; x 2 X; ð21Þ
� kðxÞ oS
on
ðx; tÞ ¼ 0; ðx; tÞ 2 CH � ½0; tf �; ð22Þ

� kðxÞ oS
on
ðx; tÞ ¼ dqbðx; tÞ; ðx; tÞ 2 CB � ½0; tf �; ð23Þ

� kðxÞ oS
on
ðx; tÞ ¼ 0; ðx; tÞ 2 CR � ½0; tf �; ð24Þ

and the search step length

ln ¼
R tf

0

R
CM
½Tðx; t; q̂b

nÞ � Tmðx; tÞ�Sðx; tÞdxdtR tf
0

R
CM
½Sðx; tÞ�2dxdt

:

In the software implementation, dqb is replaced by Pn in each itera-
tion n.

3.3. The adjoint problem

To get an expression for the gradient rJn, we define a modified
objective functional by adding a term involving an adjoint function
lðx; tÞ to (16), i.e.

JðqbÞ ¼
Z tf

0

Z
CM

½Tðx; t; qbÞ � Tmðx; tÞ�2dxdt þ
Z tf

0

Z
X

lðx; tÞfr

� ðaðxÞrTðx; t; qbÞÞ �
oTðx; t; qbÞ

ot
gdxdt: ð25Þ

Applying calculus of variations, we obtain the adjoint problem

olðx; tÞ
ot

¼ �r � ðaðxÞrlðx; tÞÞ � f ðx; tÞ; ðx; tÞ 2 X� ½0; tf �; ð26Þ

lðx; tf Þ ¼ 0; x 2 X; ð27Þ

� kðxÞ olðx; tÞ
on

¼ 0; ðx; tÞ 2 oX� ½0; tf �; ð28Þ

where oX denotes the boundary of X and f � f ðx; tÞ is given by

f ðx; tÞ ¼
2½Tðx; tÞ � Tmðx; tÞ�; ðx; tÞ 2 CM � ½0; tf �;
0; ðx; tÞ 2 X n CM � ½0; tf �:

�

The gradient follows from

rJðx; tÞjCB
¼ � aðxÞ

kðxÞ � lðx; tÞ
� �

jCB

:



5076 Y. Heng et al. / International Journal of Heat and Mass Transfer 51 (2008) 5072–5087
The non-zero property of k guarantees that the above identity is
well-defined. Hence the solution of the adjoint problem results in
values of rJjCB

.
The problem (26)–(28) is a final-time value problem. By intro-

ducing a new time variable t0 ¼ tf � t, it can be transformed to an
initial value problem, which can be solved by DROPS. Since our
temperature measurements are taken inside the heater volume
and not on the boundary, the formulation of the adjoint problem
here is different from that in [23].
4. IHCP in pool boiling

In this section, we focus on a particular IHCP defined in a con-
trol volume covering 36 MTCs in pool boiling experiments [12].
Fig. 4. Discretization model o

Fig. 5. The functions a
These MTCs have been arranged on an approximately 1� 1mm2

sized quadratic grid at the center of the heater and 3.6 lm below
the heater surface. They are able to resolve the temperature fluc-
tuations with sufficient accuracy with respect to spatial and tem-
poral dimension. Each thermocouple consists of an insulated
constantan thermocouple wire (/ 38 lm) which is embedded in
the heater. A copper layer of 2.5 lm thickness is sputtered on
the surface to create a T-type thermocouple. The thermocouple
wires below the surface do not influence the surface characteris-
tics [12]. The schematic setup of the MTCs and the test heater
section are depicted in Fig. 1. The heater surface is coated with
a pure gold layer of 1 lm thickness to prevent corrosion and oxi-
dation of the surface. As diffusion resistance a titanium layer of
0.1 lm thickness is located between the copper layer and the gold
layer.
f the 3D heater volume.

(left) and b (right).
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The real XY-positions of all MTCs were determined using a cal-
ibrated microscope measurement system [12]. The result for all 36
MTCs is shown in Fig. 3. Based on this experimental setup, we de-
fine the irregular 3D heater volume shown in Fig. 4 which has
approximately the size 1� 1� 0:3 mm3 (in the direction x, y and
z, respectively).

The discretization of the heater volume is performed with tetra-
hedral linear finite elements and the positions of the 36 MTCs are
located at grid vertices. The MTCs 1–6, 7, 12, 13, 18, 19, 24, 25, 30
Fig. 6. Convergen

Fig. 7. Contour plots of the exact (left), estimated heat flux for niter ¼ 11 (middl

Fig. 8. Estimated surface heat flux q̂b above position of MTC 8 (left) and o
and 31–36 form the boundary of CM. Besides, the mesh refinement
also considers the dimension of the thin gold and copper layer
which are sputtered on top of the heater to form the boiling sur-
face. The titanium layer is neglected. The mesh of the heater vol-
ume (see Fig. 4) from CB to CH is taken increasingly coarser due
to the fact that the variation of the temperature distribution in
the heater volume decreases rapidly as the location approaches
CH. This unstructured discretization results in 2779 spatial un-
knowns and 12,940 tetrahedra. Referring to the general 3D geom-
ce behavior.

e) and estimated heat flux for niter ¼ 150 (right) at time instant t ¼ 0:5 ms.

f MTC 22 (right) for different number of optimization iterations niter.
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etry shown in Fig. 2, here CB ¼ fðx; y; zÞ 2 X; z ¼ 0:3 mmg;
CH ¼ fðx; y; zÞ 2 X; z ¼ 0mmg and the temperature measurements
are taken on CM ¼ fðx; y; zÞ 2 X; z ¼ 0:2964 mmg (3.6 lm below
the surface CB). CR corresponds to the remaining boundaries of X.

Before processing the experimental data (see Section 4.2), a
simulation case study is set up in the following section to validate
and assess the performance of the solution approach.

4.1. Simulation case study

In this simulation case study, the solution of the direct 3D heat
conduction equations is computed using the software package
DROPS [28], which is based on multilevel nested finite element dis-
cretization methods. The simulation time interval is chosen as
0 6 t 6 1 ms. For the time discretization, a one step h-scheme
[31] with a step size s ¼ 0:01 ms is used. In this paper we choose
h ¼ 0:5, which leads to the Crank–Nicholson scheme. Piecewise lin-
ear finite elements on a tetrahedral grid are employed for the space
discretization [32]. The resulting discrete systems of equations are
solved with a preconditioned Krylov subspace method [33]. The
parameters a ¼ 0:115 mm2=ms and k ¼ 0:4 W=mm K are used.
The initial and known boundary conditions consist of a constant
temperature distribution Hðx; 0Þ ¼ 40 �C and a constant heat flux
qhðx; tÞ ¼ 0:1 W=mm2. For the initialization of the optimization
procedure, we choose q̂b

0ðx; tÞ ¼ 0; ðx; tÞ 2 CB � ½0;1�.
The heat flux
Fig. 9. L-curve for estimation with perturbed measurements with error level
r ¼ 0:02.

Fig. 10. Contour plots of the exact (left), optimal estimated heat flux (mi
qex
b ðx; y; tÞ ¼ aðtÞ � bðx; yÞ; ðx; y; tÞ 2 CB � ½0;1�

is chosen for this study to simulate the dynamics of a heat flux peak
on the heater surface. The spatially and temporally varying terms
are

aðtÞ ¼
7:5t � 3; t 2 ½0;0:4Þ;
18sinð5ptÞ; t 2 ½0:4; 0:61Þ;
4:6559t � 5:6559; t 2 ½0:61;1�

8><
>:

and

bðx;yÞ¼
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�0:6Þ2þðy�0:4Þ2

q
>0:35;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:352�ðx�0:6Þ2�ðy�0:4Þ2
q

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�0:6Þ2þðy�0:4Þ2

q
60:35:

8><
>:

The functions a and b are illustrated in Fig. 5.

4.1.1. Estimation with error-free measurements
In this subsection, we present the estimation results with error-

free measurements. We take the temperature Hex
m on CM obtained

from the solution of the direct problem with the known boundary
condition qex

b as error-free measurement data. A discrete version of
the objective functional (16),

J#ðq̂b
nÞ :¼

XNt

i¼1

XNm

j¼1

1
Nm
½Tðxj; ti; q̂b

nÞ � Tmðxj; tiÞ�2 � s; ð29Þ

is evaluated, where Nt;Nm denote the number of time steps and
mesh points on CM, respectively. ti are the time instants uniformly
discretized with time step size s in the estimation time interval and
xj 2 CM are the corresponding spatial coordinates of the mesh
points. n denotes the number of iteration steps in the optimization
procedure. Fig. 6 gives a plot of the objective functional over the
optimization iterations and it shows that the objective converges
rapidly by applying the CG method.

The contour plots of estimated surface heat fluxes at time in-
stant t ¼ 0:5 ms for optimization iterations niter ¼ 11 and
niter ¼ 150 are shown in Fig. 7. The peak value of the exact heat flux
occurs at this time instant. 36 points positioned exactly above the
36 MTCs (see Fig. 3) are selected on CB to observe the estimated
heat flux q̂b over time t. Fig. 8 shows the estimation results at
two positions above the location of MTC 8 and 22 for different
number of optimization iterations niter. The exact heat flux above
MTC 8 is zero, while the one above MTC 22 undergoes a big varia-
tion over time. The estimated heat fluxes above the other 34 MTCs
show a similar quality. Since we use error-free measurement data,
the quality of overall estimation result could be improved using
more optimization iterations.

From Fig. 7 we can observe that the estimated heat fluxes oscil-
late near the boundary of the circle (center: (0.6, 0.4), radius: 0.35)
as the number of optimization iterations increases. This is due to
ddle) and overestimated heat flux (right) at time instant t ¼ 0:5 ms.
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the fact that the function of the exact heat flux is not differentiable
on the boundary of the region where function b is non-zero. Using
a global higher space resolution could decrease the oscillation of
estimates near the circle boundary and hence obtain better
approximation quality. However, this will also result in higher
computation time. Instead of refining the whole grid, a method
involving local grid refinement may be preferred. This issue will
be investigated in future work.
Fig. 11. Estimated surface heat flux q̂b above position of MTC 8 (top row) and o

Fig. 12. Isopropanol boiling curve at p
4.1.2. Estimation in the presence of measurement errors
The simulated measurement data are constructed by perturbing

the exact temperature Hex
m , obtained as in the previous section,

with an artificial measurement error x. The perturbed measure-
ment temperature Hm is given by

Hm ¼ Hex
m þ rx;
f MTC 22 (bottom row) for different number of optimization iterations niter.

sat ¼ 0:1 MPa (adopted from [12]).
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where r is the standard deviation of the measurement error. x is
generated from a zero mean normal distribution with variance
one. In this simulation case study, we choose r ¼ 0:02, which re-
sults in a measurement error of approximately 10%.

In case of error corrupted temperature measurements, the esti-
mation quality will become worse if too many iterations are ap-
plied, although the value of the objective functional is still
getting smaller. This is an indication of fitting the noise due to an
overparameterization of the heat flux function representation. In
order to find the best termination index, we need a suitable stop-
ping criterion which can be based on the well-known discrepancy
principle or the L-curve criterion [29,34].

4.1.2.1. Discrepancy principle and L-curve criterion. A suitable choice
for a stopping criterion is a threshold for the objective functional,
i.e.

J#ðq̂b
nÞ < �: ð30Þ

The discrepancy principle suggests to stop the optimization proce-
dure when the temperature residual matches roughly the error
magnitude, i.e.

jTðxi; t; q̂b
nÞ � Tmðxi; tÞj 	 r: ð31Þ

By substituting (31) and (30) into (29) we obtain

� 	 r2tf : ð32Þ

The application of this version of the discrepancy principle yields
the best termination index – iteration 12.

An alternative method for the choice of the best termination in-
dex is the L-curve criterion [29,34], a heuristic rule, which uses a
parameterized plot of the objective functional against a solution
norm. In this simulation case study, we select the solution norm

kq̂b
nk2

# :¼
XNt

i¼1

XNb

j¼1

1
Nb

d2q̂b
nðxj; tÞ

dt2

" �����
t¼ti

3
5

2

� s; ð33Þ

where Nt ;Nb denote the number of time steps and mesh points on
CB, respectively. xj 2 CB are the corresponding spatial coordinates
of the mesh points. The best compromise for the heat flux estima-
tion is found at the maximum curvature of the L-curve as shown
in Fig. 9. This maximum curvature arises at iteration 11.

The best termination index obtained by L-curve is very close to
the one obtained by the discrepancy principle. Moreover, in case
the noise level of the measurement data is not known in advance,
Fig. 13. L-curves for the data measured at operating point 1 (lef
the L-curve criterion is a better choice, because it does not require
any knowledge on the character of the measurement noise.

4.1.2.2. Estimation results. The contour plots of optimal ðniter ¼ 11Þ
and overestimated ðniter ¼ 150Þ heat fluxes for t ¼ 0:5 ms are
shown in Fig. 10. Fig. 11 shows the estimation results above posi-
tions of MTC 8 and of MTC 22 for different number of optimization
iterations niter.

In contrast to the results shown in Fig. 8, the estimated heat flux
above position of MTC 8 already starts to oscillate in the first few
iterations in a small range of values (see left top row of Fig. 11),
whereas the estimated heat flux above position of MTC 22 has
not yet been well approximated and continues to approach the ex-
act one (see left bottom row of Fig. 11). A similar shape pattern of
the estimated heat fluxes above position of MTC 8 at iteration 5
shown in Fig. 8 (left) and Fig. 11 (left top row) can be observed,
although the latter oscillates. The optimal estimated heat flux is
obtained at iteration 11. It captures the major dynamics of the ex-
act heat flux. For longer iterations, the estimated heat flux oscil-
lates and the estimation quality decreases rapidly as further
iterations are performed. The overestimated heat flux obtained in
iteration 150 strongly oscillates over time and space. It is very dif-
ferent from the exact one. This effect is due to the ill-posedness of
the considered IHCP.

4.2. Estimation with measurement data from pool boiling experiments

In the experiment carried out at TU Berlin [12], local processes
in pool boiling along the entire boiling curve have been investi-
gated. Using a temperature controlled heater, boiling curves for
some test fluids have been evaluated [12,35]. In this section, we
use the obtained temperature measurement inside the heater to
estimate the local heat flux qb at the fluid/heater interface CB.

We solve the 3D IHCPs along the isopropanol boiling curve (see
Fig. 12). The measurement data at 36 MTCs have been taken with a
sampling frequency of 25 kHZ [13]. Correspondingly, for the time
discretization, time step size s ¼ 0:04 ms in the one step h-scheme
is applied. The estimation time interval is chosen from 0 to 30 ms.
Since there are more discretized mesh points (542) on CM than
MTCs (36), the temperature values at mesh points on CM not cor-
responding to MTC positions are obtained by spatially interpolat-
ing the data measured at the 36 MTCs. The thermal diffusivity a
and thermal conductivity k are modeled as functions of the spatial
coordinates to account for the fact that the heater is made of cop-
t), operating point 2 (middle) and operating point 3 (right).
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per with thin sputtered gold (1 lm) layer on its top part [12]. The
titanium layer (0.1 lm) is neglected. Due to space limitations, we
only present the estimation results for three representative operat-
Fig. 14. Operating point 1 – contour plot of optimal estimated surf
ing points 1, 2 and 3 in Fig. 12, which belong to the nucleate and
transition boiling regimes. The macroscopic heat fluxes captured
by the boiling curve at these three operating points are around
ace boiling heat flux in the time interval (22.24 ms, 22.52 ms).
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0:288 MW=m2, 0:441 MW=m2 and 0:108 MW=m2, respectively.
The operating point 2 is close to the point where the critical heat
flux occurs.

By applying the L-curve criterion, the best estimated boiling
heat fluxes for the three operating points are obtained at iteration
Fig. 15. Operating point 2 – contour plot of optimal estimated surf
490, 715 and 310, respectively (see Fig. 13). The estimation results
(see Figs. 14–22) show that the temporal and spatial evaluation of
the surface heat flux differs significantly among the boiling re-
gimes. Because of space limitations, we only show representative
contour plots of estimated surface heat fluxes in special time inter-
ace boiling heat flux in the time interval (10.96 ms, 11.24 ms).
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vals (22.24 ms, 22.52 ms), (10.96 ms, 11.24 ms) and (5 ms,
5.28 ms) for the three operating points, respectively (see Figs.
14–16). During these three short time intervals, the boiling heat
fluxes above positions of MTC 22, 20 and 14 attain very high val-
ues, much higher than the values of macroscopic heat fluxes cap-
tured by the boiling curve shown in Fig. 12. The time evolution
Fig. 16. Operating point 3 – contour plot of optimal estimated s
of estimated heat fluxes just above the MTC positions are shown
in Figs. 17, 19 and 21 for the considered operating points. The esti-
mated boiling heat fluxes above MTC positions 20–23 are com-
pared with those obtained in [13] (see Figs. 18, 20, 22). Their
peak values and patterns are consistent. However, we solve the
IHCP in a 3D computational domain instead of a 2D one. Corre-
urface boiling heat flux in the time interval (5 ms, 5.28 ms).
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spondingly, the estimation results are also extended from two to
three space dimensions. In the following, we discuss the estimation
results along the boiling curve in detail.

In low heat flux nucleate boiling (results are not shown here),
the temporal and spatial heat flux and surface temperature fluctu-
ations are relatively moderate. The surface temperature exhibits
fluctuations between 0.1 and 0.3 K.

At higher heat fluxes in nucleate boiling, e.g. at operating point
1, both the number of fluctuations per unit time and their ampli-
tude increase. Frequent sharp temperature drops with amplitudes
up to 1.0–1.5 K are observed. Fig. 17 shows the time evolution of
the estimated heat fluxes above all the 16 MTCs which are not
Fig. 17. Operating point 1 – optimal estimated boiling heat flu

Fig. 18. Operating point 1 – a comparison of our estimated boiling he
on the boundary of the heater volume. Peak values of the surface
heat flux at this operating point reach up to 5–6 MW/m2, which
is much higher than the macroscopic value 0.288 MW/m2. From
Fig. 14 we can see that the boiling heat flux above MTC position
22 reaches its maximum at time instant t ¼ 22:36 ms and the area
of high heat fluxes covers only one or two observation positions
above MTCs. Hence, the temperature and heat flux fluctuations at
this operating point are probably caused by evaporating liquid–va-
por structures such as nucleating bubbles with dimensions smaller
than the size of MTC array.

At operating point 2, which is close to critical heat flux, both the
fluctuations and the amplitudes of temperature drops continue to
xes above MTC positions 8–11, 14–17, 20–23 and 26–29.

at fluxes above MTC positions 20–23 and those obtained in [13].
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increase. Some longer periods of monotonically increasing temper-
ature excursions up to 1.0–2.5 K can be observed to emerge in an
irregular pattern. In addition, frequent sharp temperature drops
with typical amplitudes up to 1.0–1.5 K can also be observed.
Again, the temperature and heat flux fluctuations are probably
caused by the local evaporation of liquid–vapor structures. This
can also be confirmed by the estimation results shown in Fig. 15,
where more local small areas with high heat fluxes are observed.
Peak values of surface heat flux at this operating point reaches
up to 6 MW/m2 (see Fig. 19).

At operating point 3 and higher heat fluxes in transition boiling,
the number of fluctuations per unit time decreases. However, lar-
ger temperature drops with amplitudes up to 2.0–3.0 K and tempo-
Fig. 19. Operating point 2 – optimal estimated boiling heat flu

Fig. 20. Operating point 2 – a comparison of our estimated boiling he
ral gradients of 10,000 K/s are observed. Fig. 16 shows that the area
of high heat fluxes is more extended compared to that in nucleate
boiling. This indicates that the temperature and heat flux fluctua-
tions become more correlated above the MTCs as the average
superheat of the boiling surface is increased and these sharp tem-
perature drops are probably due to a rewetting of the boiling sur-
face. Fig. 21 shows the estimated heat fluxes above positions of 16
MTCs, which are not on the boundary of the heater volume. It also
confirms the observation made from Fig. 16.

In summary, the time intervals with high temperature excur-
sion continue to grow from high heat flux nucleate to transition
boiling. Since time and space scales are coupled by the velocity
of the wetting and rewetting process, longer periods of the temper-
xes above MTC positions 8–11, 14–17, 20–23 and 26–29.

at fluxes above MTC positions 20–23 and those obtained in [13].
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ature excursions mean larger structures of a possibly non-wetting
area on the MTC array, due to the presence of a local vapour cluster
for instance. Very similar patterns like the single fluctuation can be
repeatedly identified at high heat flux transition boiling, e.g. at
operating point 3. Generally, in high heat flux nucleate boiling at
lower superheats, the amplitudes of the heat flux fluctuations are
smaller than those observed in transition boiling. However, the
number density of such temperature drops is much larger in the
nucleate than in transition boiling. The magnitude and the number
density of these fluctuations is therefore a feature of a particular
boiling regime. In nucleate boiling the temperature drops and the
associated high heat fluxes are certainly caused by rapid local
evaporation at a nucleation site on the heater surface. In transition
Fig. 21. Operating point 3 – optimal estimated boiling heat flu

Fig. 22. Operating point 3 – a comparison of our estimated boiling he
boiling, they are most likely caused by liquid contacts rewetting
highly superheated and vapour-covered surface spots.

The characteristic sizes of the liquid–vapor structures in the
two-phase at the surface are found to increase with increasing
temperature superheats. Due to the spatial resolution of the MTCs,
we introduced more spatial points on the measurement plane to
ensure a reasonable accuracy of the discretized model. Interpo-
lated temperature values at mesh points not corresponding to
MTC positions are used for the numerical computation. We could
not distinguish microlayer regions with high heat fluxes as ob-
served in single bubble studies [10]. Similar to the estimation re-
sults in [13], negative heat fluxes in some time intervals at all
three operating points are also found in our 3D estimation results
xes above MTC positions 8–11, 14–17, 20–23 and 26–29.

at fluxes above MTC positions 20–23 and those obtained in [13].
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(see Figs. 17–22). However, the time intervals in the 3D-case are
very short. This may be an indication that there might locally exist
heat transferred back to the heater surface, or an artefact of the
numerical methods. The characteristics of temperature fluctua-
tions in the different boiling regimes are associated with the
dynamics of the two-phase layer above the heater surface. This
has been measured with the same test heater by micro optical
probes at different heights above the heater [35]. These measure-
ments yield information about vapor–liquid structures and for
some extent interface velocities of the two-phase structure above
the surface.

5. Conclusions

We have formulated and solved a transient IHCP on an irregular
3D domain in pool boiling experiments by applying a CG-based
optimization method. A simulation case study has validated the
solution approach. The local boiling heat fluxes at three represen-
tative operating points along the boiling curve of test fluid isopro-
panol have been successfully estimated. Using the CG-based
solution approach, the computational bottleneck of the filter-based
method [24] for the given IHCPs in the pool boiling experiments
has been overcome. Based on real experiments, the estimation re-
sults have been obtained for the first time in three space dimen-
sions. The solution approach is rather general and can be used to
solve similar 3D IHCPs at reasonable computational cost.

One of our future work will be devoted to the development of
an appropriate strategy which can deal with limited measure-
ments in space. Another possible improvement is to apply adaptive
mesh refinement algorithms to find the optimal discretized model
adapted to the identification task. This can avoid the inaccurate
numerical computation with coarse discretized models and too
much computation effort with an unnecessary fine one. Moreover,
the identifiability issues will be addressed especially with respect
to the spatial MTC resolution.

The characteristics of temperature fluctuations in the different
boiling regimes are associated with the dynamics of the two-phase
layer above the heater surface. The corresponding measurements
obtained by micro optical probes [35] yield information about va-
por-liquid structures and for some extent interface velocities of the
two-phase structure above the surface. In combination with the
associated heat flux distribution and dynamics evaluated in the
present work, a data basis is available for the development of real-
istic mechanistic heat transfer models for boiling regimes beyond
low heat flux nucleate boiling, where heat transfer models can be
based on the study of single undisturbed bubbles.
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